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interface deformation is shown): 2 is the total wave arising under the action on the film 
surface of normal and tangential stresses, 2 is the wave arising under the action of normal 
stresses only, nao = 5.CHE. The parameter values are d = 0.93; h = 4.99, a = 5, P, = 12.3, & = 0.0025, y = 
0.0037, 21= 500, F = 1.09. In this case the thin film reduces the wave amplitude by one another. 
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V.N. EMIKH 

A boundary value problem is formulated describing two-dimensional steady 
filtration in a layer of soil of infinite capacity,towardsa horizontal 
vacuum drainage which captures partly or wholly, at some specified rate 
of drainage, thegroundwater filtering downwards from the soil surface. 
A solution of the problem is constructed using conformal mapping and the 
solution contains two unknown mapping parameters. A system of equations 
is derived for the latter parameters, and their unique solvability is 
established analytically. At the same time, a restriction on the 
filtration capacity of the drainage is revealed, corresponding to the 
critical mode (complete interception of the flow), A computer program 
is written for the algorithm used to compute, for the given parameters 
of the medium, the flow characteristics in the critical mode, and at some 
value of the drainage output chosen arbitrarilyfromthe interval of 
admissible values. Numerical examples are given. 

Horizontal vacuum drains are installed in the irrigated soil of infinite capacity. Their 
purpose is to intercept the irrigation water seeping through the root system from the surface, 
flooded with a thin layer of water. We will assume #at every stream associated with the 
action of one or another drain is symmetrical about a vertical line passing through the eentre 
of the drain. The side boundaries of the streams are free ,*and atmospheric pressure is 
maintained along them. For this reason the flows towards separate drains are themselves 
separate, so that we can speak of a system of drains in the model in question only in a con- 
ventional manner. 

The right half of the zone of action of one of the drains represented by a point drain B, 

(sink), is shown schematically in the 4 =++ iy -variable plane as a region of flow in Fig.la 
for the case when a proportion Q of the total (within the shaded region) inflow Q.. of surface 
water is intercepted by the drain, and the remainder Q. flows down to infinity. The correspond- 
ing domain of the complex potential w=cp+i$ is shown in Fig.lb. The investigation is carried 
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Fig.1 Fig.2 

out in terms of the reduced quantities z and o connected with the corresponding 
I,. and my by the relations (x is the coefficient of filtration) 

z = ZJl, 0 = O,l(Xl) 

real quantities 

Let us bring into OUT discussion the Zhukovskii function 0= oi-ia whose domain is shown 
in E'ig.lc. Mapping the regions o and 8 conformally onto the half-plane Im i>/O (Fig.ld), 
we obtain 

,,_,p I/b(lf-b) s (r+ddu 
n r-b o (b+Ir)2/q=ij-= 42) 

tib(l+ b) arcsin ,,-r 
r-b 1 

where UT= w,-~w~ is the complex rate of filtration /l/. 
At the point D where E= l,o= -iQdrz= 1 (Fig.la,b,d), relations (2) yield 

Q,=Q+Qo, Qo= ‘b;1_+6b) Q=i-+rctgl/6 (4) 

Assuming that 1=1&c= -b we obtain from (2) 

fi = (Qht In (i + a) + (ZQ&) arshy’i; (5) 

Aiming at a straightforward formulation, we shall assume that the geometrical parameters 
of the scheme 1,$ and the drain flow rate Q are given for each specific case. AS in /2/, we 
will study the flow pattern by varying Q for fixed 1 and $. Here the key problem is that of 
the form of the relation a(Q) determined by Eq.(5). From it we obtain 

f (5) = arsh z.arctg 3 - (s/4)111 (i + 9) 
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When a proportion of water filtering fromthesurface is intercepted by the drain, we have 

Q>O, Qo>O. Since we also have ar&1/6<I/% when b>O, the expression within the square 
brackets on the left-hand side of (6) is also positive. 

To find the sign of f(o), we shall consider the following system ofauxiliaryfunctions: 

From the definition of the function f(z) and relations (7) it follows that f(O)=&(O)= 

fs (0) = 0, f&P,8 <0 when r>O. Furthermore, since fi (0) = 2 - n/2 > O,fr (CG) = 0 we find that A (s)> 
O,f'(.z)>O and finally f(z)>0 when f > 0. As a result we conclude that 

db/dQ > 0 (8) 
Thus the parameter b given by relation (5) for fixed B as a function of the flow rate 

Q, increases monotonically as Q increases. When Q reaches a certain value Q*, we have 

i - (2Q*/n)srctgl/F = 0, b* = b IQzQ* (9) 

When relation (9) holds, we find from (4) that r=m, Qa = 0, Q =:Q*:the flow is fully inter- 
cepted by the drain and the points R and C coincide (Fig.la, d). Relation (3) now becomes 

l/w = i (1 - p). p = [(i - 6)/(1 + b’)l”” (10) 

Taking (10) and relations w=dwid% into account we find in the limiting case in question, 
under the drain sink B where z = iy (y> & Iu = -ii+ o= cp+iQ= -_pfy$_y+iQ (p is the pressure 
and y is the specific gravity of water), that 

On a separate segment g< -b and in accordance with (Il.), we obtain q,>,O, dp/dy.>y and 
the equalities hold only at the point R (6=--m). At this point the pressure gradient counter- 
balances the force of gravity and overcomesiton the last part of the segment BR where the 
flow runs upwards. Increasing the vacuum by an additional arbitrarily small amount will upset 
the dynamic equilibrium between the flow and the atmosphere, and will cause a leakage of air 
into the drain from below. It therefore follows that the flow mode under discussion is critical 
Complex filtration models with suspended flow were studied in /2, 3/ and the scheme of flow 
studied here was mentioned in the latter paper. 

Eliminating Q from (5) using (9), we obtain the equation for determining the value b* 

of the parameter b in the critical mode 

F (b*) = (42) 

We establish by differentiation that the function F(b*) increases monotonically and 
F(O)= O,F(oo)=m.This implies that for any fixed value of the ordinate 6 of the drain sink B 
the parameter b* and the limiting admissible value of the drain flow rate Q*= Q(b*) can be 
determined uniquely from relations (12) and (9). Further, using (8) we can conclude that when 
p has the same value, the parameters b and r can be found uniquely from relations (5) and (4) 
for any Qe (0, 0'). We note that b(Q)= (b,, b*) and we find the value of b, =sh*(nb/2) from (5) when 
Q = 0. 

Determinationofthemappingparametersenablesustouse, the analytic relations obtained 
to compute the flow characteristics and the position of the free boundary CD. Its complex 
parametric equation can be written using relations (2) and Eq.(4), as 

When the flow is partially intercepted, relation (13) can be used in computing the 
dividing stream line R,R along which tp= -Q. Using the first equation of (2) to write this 
relation in expanded form, we arrive at the relation 

(n/2) Q. - Imv = 0 (14) 

Choosing now some set of values of the complex variable t satisfying Eq.(14), and sub- 
stituting them into the right-hand side of (13), we find the coordinates of the corresponding 
pairs on the line R,R. The posi;i.on of its end points R, and R is found from the following 
formulas obtained from relations (2) and (4): 

,(15) 

The parameter r. is found from the relation o (a,)= -iQ. Using the first relation of (2), 
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we can express it with help of the equation used in the first formula of (15) 

In the critical mode with line R,R. coincides with the free boundary CD whose equation 
is obtained from (13) when Q= Q”, 6= b*,Q,=O. 

Using the analytic relations obtained, we have constructed and programmed an algorithm 
for computing certain characteristics of the flow in question, with the parameter b found 
beforehand from (5). The table gives the results of such computations for two versions 1) 
fl = 2.0 and 2) @= 1.0. In each case the flow is first computed in the critical mode when 
Q=Q”, the latter determined together with the parameter b* from relations (9) and (12). Next, 
the computations are carried out for severalvalues of QszfO,Q*) and the data in the table 
tabulated accordingly. The upper lines correspond to case 1, andthe lower lines to case 2. 
The quantity ps, can be regarded as the reduced pressure onthedrain contour, modelled by an 
exponential curve passing through the point 3, with the ordinate jll= B-0.05 in both cases. 

Table 1 

i-4 / QfQ' 

1 OJ 

2 0,4 

3 0,6 

4 0,8 

5 1,o 

Q QS Q" - PB, “R. UR -pfl 1 eAl 

- 
1,010 0,804 0,206 
1,060 0,817 
1,018 0,606 

0,239 

1,112 6,626 
0,398 

1,024 
0,572 
0,576 

1,155 :% 
1,028 0:203 

0,840 
0,728 

1,190 0,218 1,083 
1,031 

8 
0,858 

1,215 1,300 

0,203 
0,221 
0,402 

X.:; 
0:539 
0,798 
0,790 
1 
1 

2,066 
1,077 
;.;z 

2:200 
1,232 
2,276 
1,318 
2,435 
1,521 

0,188 
0,206 
0,269 
;,;;: 

0:319 
0,251 
0,277 

8 

1,016 
1,101 
1,029 
1,191 
1,038 
1,268 
1,045 
1,331 
1.050 
1,378 

In addition to the values given in the table, Eq.(13) is used to compute the coordinates 
of some set of points lying on the free boundary CD, and in case when the flow is partially 
intercepted, also of the points of the dividing stream line RR,. Relation (14) is used in 
the latter procedure. The curves computed in this manner are shown in Fig.2, using solid 
lines for the first case, and dashed lines for the second case, The numbers on the graph and 
in the table refer to the same values of Q. 

Comparing the flow pattern with its characteristics we see that placing the drains deeper 
ensurestheinterception of the same proportion of the downward flow in the first as well as 
in the second case, but with less vacuuming. At the same time, the deep drainage enhances 
the filtration much less and upsets its uniformity within the subsurface layer of the soil. 

If on the other hand we bring the second version to the same value of fi= 2,0, as the first, 
then according to (1) we will have 1= 2,o. All linear quantities including the flow rates, 
and the quantities associated with them, will increase by a factor of two. The dashed lines 
in Fig.2 should be corrected accordingly. The differences between two computational versions 
mentioned above are now seen to be the result of a change in the distance between the drains. 
Keeping 0% fixed we have, for I= 2.0, ps,=O.5847; 1.1447; 1.6793;2.1652; 2.6004 for Q/Q* = 0.2; 0,4; 0.6: 0.8; 
1.0 respectively. Comparison with the quantities ps, for the first version shows that doubling 
the distance separating the drains requires an approximately threefold increase in the vacuum 
atthedrain contour in order to intercept the same proportion of the filtration flow from the 
surface. 

1. 

2. 
3. 
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